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Abstract 

This paper introduces the logic of a control action S4F and the logic of a continuous 
control action S4C on the state space of a dynamical system. The state space is 
represented by a topological space (X, T) and the control action by a function / from 
X to X. We present an intended topological semantics and a Kripke semantics, give 
both a Hilbert-style axiomatization and Gentzen-style sequent calculus for S4F and 
S4C, and prove completeness with respect to both semantics, a cut-elimination for the 
sequent calculi, and decidability of the logics. 

1    Introduction 
Let Ca be the propositional modal language generated from a countable set PV of prepo- 
sitional variables, the propositional constant J_ (falsum), the propositional connective —> 
(implication), and the modal operator □. Let Caa be the propositional language extending 
£a which includes, in addition, a new modal operator [a]. 

Let S4 denote the subset of Caa consisting of all formulas derivable from a standard 
axiomatization of classical propositional logic together with the axiom schemes: ü(y> —y 
tp) —> (Dip —>■ □V'), 0<p "-* V and nV --*• ^Dip, using the inference rules of modus ponens 
(MP) and O-necessitation. 

We develop a bimodal extension of S4, which we call S4F, in the language Caa with the 
single new modal operator [a]. In the intended topological semantics for this new logic, the 
S4 modality □ is interpreted in the standard way as the topological interior operator, and 
[a] is interpreted as the inverse image /-1(-) for a fixed total function / : X —> X on the 
state space X, equipped with a topology T. For each propositional formula tp of £ao, \\<p\\ 
is a subset of X, and ||[a]y>|| is the set of points x € X such that after applying the function 
f :X -¥ X interpreting a, we have f(x) € \\(p\\. So \\[a]<p\\ = /_1 (\\(p\\). The set map /_1 

commutes with all the Boolean operations on sets and the axiom schemes for S4F reflect 
this: [a](ip —tip)—* ([a](p —t [a]xß) and ^[ajy <-> [a]-iyj. The [a]-necessitation inference rule 
corresponds to the totality of /. 

When the function / is continuous with respect to the topology T, ||[o]v|| 1S an open set 
(closed set) whenever ||y»|| is open (closed), and / is continuous exactly when the formula 

[a]n<p -> 0[a]<p 

is satisfied (evalutes as the whole space X) for each ip € Caa- 
In application to continuous dynamics in hybrid control systems, we think of the symbol 

"a" as denoting a "control action", typically a vector field applied for a fixed duration, so 
that the function / interpreting a is a section of a flow on the state space (manifold). 

In dynamic or program logics (see, for eg. [Ha84] or [KT90]), formulas of the form 



where p denotes a program, express the Hoare partial correctness assertion {<p}p{ip}' "if 
program p begins execution in a <p state then it will terminate in a ^ state". In the logic 
S4F, formulas of the form: 

V -+ [a]<p 

can be read as:   "whenever ip, then action a always makes it the case that (pn or more 
succinctly, "action a always takes xp states to ip states". Such a formula is true (evaluates as 
the whole space) in a topological model X = (X, T, /; £) exactly when, for all x 6 X: 

x 6 ||0||€   implies f(x) € |MI* 

where £ is a valuation of atomic propositions as subsets of X. More generally, 

ip -*• [a]V 

reads "k iterations of action a always takes ip states to ip states", where [a]°(p is just ip and 

[a]fc+V is [a][a]V- 

In this paper, we concentrate on the (classical) logic of a single control action. We present 
a topological semantics and a Kripke semantics, give both a Hilbert-style axiomatization 
and a Gentzen sequent calculus for the logic S4F, prove completeness with respect to both 
semantics as well as a semantic proof of cut-elimination for the sequent calculus and show 
the logic to be decidable. 

2    Syntax and Topological Semantics 

Definition 2.1 Let Caa be the propositional language generated from a countable set AP of 
atomic propositions, the propositional constant _L (falsum), the propositional connective —> 
(implication), and the modal operators □ and [a]. 

Within the language £oa, we can define in the usual way the propositional constants and 
the other classical propositional connectives in terms of JL and —>, the diamond operators O 
and (a) as the classical duals of □ and [a], respectively: 

T 0 
-i-L 

-"P 
0 

tp ->■ -L 

ip Aip 
0 

->(<p -> -^ip) 

ip\/ rp 
0 

-up —y tp 

(p <r+ tp 
0 

(<p-+ip) A (iß-¥ <p) 
Oip 

0 —lO—np 

(a)<p 
0 -i[a]-i(p 



Definition 2.2 A topological structure for the propositional language Caa is a triple X = 
(X,T,f) where 

• X ^ 0 is the state space; 

i 7*C V(X) is a topology on X (i.e. 0,leT, and T is closed under arbitrary unions 
and finite intersections); and 

• f : X —»■ X is a total function. 

Note that at this stage, / is not assumed to be anything other than total; in particular, it is 
not assumed to be continuous w.r.t. T. 

Definition 2.3 A valuation for a topological structure X = (X,T, f) is any map £ : AP —>• 
V(X) assigning a subset £(p) C X to each p € AP. Each such valuation uniquely extends 
to a valuation map ||-||^ : £aa —> ^P0> satisfying the following clauses: 

\\p\k = e(p) 
II-MI« = 0 

llv-+tfll< = -M^Hk 
||Dp||€   =   mir (|MI«) 

where intf is the interior operator determined by the topology T', i.e. for all AC. X, 

intT{A)   =   {J{U&T\UCA} 

and /-1 is the inverse-image operator determined by the total function f: 

f-l(A) = {xeX\f(x)eA} 

Definition 2.4 A topological model for Caa is a pair (%,£), where X = (X,T,/) is a 
topological structure for Caa and £ : AP —>■ V(X) is a valuation for X. 

Definition 2.5 Let tp £ Caa be a propositional formula. 

• (p is satisfied at a state x € X in a topological model (X, £) iff x € \\<p\\^. 

• (p is true in a topological model (X, f), written (X, £) |= (p, iff\\<p\\{ = X; 

m if is valid in a topological structure X, written X (= tp> iff for aU valuations £ for X; 

we have ||y|L = X; 



• (p is topologically valid iff%\= <p for every topological structure X = (X,T,f) for Coa- 

The topological semantics for the defined constants, connectives and modal operators are 
as one would expect. 

imi, = x 
Ihdl« = -\wh 

\\<pM>h = IMI<n|M|< 
lk>v^ = |Mi€u||^||€ 

\\0<p\\€   =   cb[\\<Pk) 

\\(*)<p\\t = -/-1 (- HvllO 
where elf is the closure operator determined by the topology T, i.e. for any A C X, 

clr {A)   =   -intT - (A) 
=   f]{C \-C eTandACC} 

Observe that for any topological structure X = (X, T, /) and valuation £ for X, 

y^^ = x   iff   |Ml^c|Hle 
More generally, 

||p -». Vll^ = {xeX\ if x G |M|C   then x G |MI4 } 

The proposed reading of formulas of the form: 

V> -»• [a]p 

as "action a always takes rf> states to (p states" is based on the fact that in any topological 
model (X, £), 

(X,0 j= 0 -> [a]p   iff for alls € X,if a; G IMI* then f(x) G |M|€. 

We can embed Intuitionistic propositional logic Int within S4 via the standard Gödel 
translation by "Boxing" all propositional variables, i.e. up, and defining Intuitionistic nega- 
tion ~ and Intuitionistic implication ~-» as: 

A 

(p ~~* ^> = n(ip —y ^/)) 

Topologically, this means that in the Intuitionistic semantics, all propositional variables 
denote open sets, Intuitionistic negation corresponds to the interior of the complement, and 
Intuitionistic implication corresponds to the interior of classical implication. 



3    Hilbert-style Axiomatization 

Definition 3.1  The Hilbert-style proof system for the logic S4F has the following axiom 
schemes, in the language Caa: 

CP: 
OK: 
□T : 
□4: 
[a]K: 
[ah: 

and the inference rules: 

We write 

axioms of classical prepositional logic in Caa 

D(ip-+ VO -»■ (°<P -»DV0 
Dip -» ip 

Dip —>• DDy? 

[a](p -> V) -»• ([a]y> 
[o]->(/? f* _,[a]<£> 

modus ponens : 

□ —necessitation 

\a] —necessitation 

[a]*) 

[a]y? 

S4F ha- v? 

or say y is S4F# provable, if the formula ip G £aa ^OS arc S4F Hilbert-style derivation. 

The axiom schemes üK, üT and 04, together with CP, and the rules of modus ponens 
and ü-necessitation, constitute the standard Hilbert-style proof system for propositional S4. 
From McKinsey and Tarski [McK41], [MT44], the S4 axioms are true in every topological 
space (X, T) and hence true in every topological structure X = (X,T, /), and the inference 
rules are truth-preserving (i.e. if the hypotheses evaluate as the whole space X, then so does 
the conclusion). 

The axioms [a]K and [a]-> for the [a] modality, together with the [a]-necessitation rule, can 
be found in [Lern??]1, where the uni-modal logic is given the name KF ("F" for "function"). 
The logic KF is identified as characteristic for total (serial) and functional (deterministic) 
binary relations in the Kripke semantics. In a sense, the [a] operator is nothing more than the 
"next-time" or "next-state" modality of temporal logics2, given a more abstract semantics. 

lrrhe source manuscript of the "Lemmon Notes" [Lem77] is dated 1966, and was a collaboration of E. J. 
Lemmon and Dana Scott. It was edited for [Lem77] by Krister Segerberg. 

2The first appearance of the KF axioms seems to be in A. N. Prior's [Pri57] as the axioms for the 
"tomorrow it will be the case that" modality, and appear again in that guise in [Seg67]. See also Appendix 
B of Prior's [Pri67]. 



1. [a](p -> [a]xß 
2. ->[a]ip V [a]xj> 
3. [a]-<{p V [a]^ 
4. -19? ->((/? —)• vo 
5. [a] (-.p -*• (</> -> ^)) 
6. [o]iy> -+ [a](y> -»• VO 
7. ■0 —>■ (<p —y VO 
8. [a] (xß -> (p -4 0)) 
9. [a]V> -»■ [a](y> -> 0) 
10. [a](<p -»■ V>) 

The novelty here lies in combining it with the S4 □ and O modalities to give symbolic 
representation to a topology as well as an arbitrary function. 

The converse of [a]K is derivable as follows: 

hypothesis 
from 1.  by propositional logic 
from 2.  by [a]-i  and propositional logic 
tautology of propositional logic 
from 4. by [a]— necessitation 
from 5.  by [o]K 
tautology of propositional logic 
from 7. by [a]—necessitation 
from 8.  by [o]K 
from 3.,6.   and 9.  by propositional logic 

Hence [a] commutes with each of the classical (Boolean) propositional connectives. Thus 
as a modal operator, [a] is classically self-dual, since in S4F#, 

(a)(p •H-  -i[a]-«£> <->■ -i-i[a]<p <->  [a](p 

The following are S4F# provable, for any formulas </?, xß € Cna and k G N, where if k > 0, 
[a] V denotes the formula [a][a]...[a]y>, with k iterations of the [a] operator and if k = 0, then 
[a] V is just <p. 

[a]fc-> :      ->[a]kip -H- [a]k-«p 
[a]k _>:     [a]k{(p _+,!,)„ ([a]V _+ [a]ty) 
[a]fcA : [a]k(ip A xß) ** ([a]V A [a]V) 
[a]fcV : [a]k(<p W xß) ^ (WV V [o]V) 
[a]kT : [a]fcT 
[a]fcl : [a]k 1 -H- ± 
[a]fcD : [a]*Cty -»• [a]V 
[a]*C>: [a]V -► [<*]*<ty 

The following are admissible inference rules in S4F#, for any formulas ip,xß,x € Caa and 
fc,/€N: 

f a]k—necessitatio n 

Monotonicity of [a] 

Hoare composition :      ——' L J ^l C"k+l' 
L 

tioi 1 : 
MV 

k . 

[0 

(p -+ xß 

i]kip -»■ [a]V 

<P ~H >]fcx, x -> WV 



Observe that there are no axioms for S4F containing both Ü and [a], so the behaviors 
of the two modalities are quite independent and the logic can be thought of as a "direct 
product" of S4 and KF. When we adjoin a true bimodal axiom such as 

Cont :     [a]Oip -> D[a]tp 

the result is a richer "amalgamated product" of S4 and KF. 

Proposition 3.2 Topological Soundness of S4F Hilbert-style axiomatization 
For all formulas ip of £aa,   if S4F \~H <p   then ip is topologically valid. 

Proof. The topological validity of the S4 axioms for □ plus the validity-preservation of 
modus ponens ü-necessitation follow trivially from the properties of the interior operator; 
see [McK41], [MT44]. The semantical validity of the [a]-necessitation rule translates as 

|M|e = X  implies r1 (|MI<) = X 

and the equation f~l(X) = X holds exactly when / : X —)■ X is a total function. The 
validity of the F axioms for [a] are immediate from the properties of the inverse-image 
operator. ■ 

4    Sequent Calculus 

We give a Gentzen-style sequent calculus for the logic S4F. In the following, (p and ip are 
arbitrary formulas of the language Caa and Y and A (with or without subscripts) are (possibly 
empty) multisets of formulas of £no (i.e. finite "sets" in which repetitions are allowed, so we 
can ignore the Exchange rules required in Gentzen systems that treat sequences of formulas 
rather than multisets). The join or union of two multisets V and A is written T, A, and 
either T, (p or <p, T denote the multiset resulting from the join of T and the multiset whose 
sole member is <p. A sequent is an expression of the form T => A; the multiset T on the left 
is called the antecedent, and the multiset A on the right is called the succedent. 

If multisets of formulas T and A are {{</?i, ...,</?„}} and {{^1, ...,ipm}}, respectively, then 
the sequent T =£• A translates as the propositional formula 

(Vi A ... A <pn) -»• (^1 V ... V xpm) 

of Caa, and is abbreviated as: 

Ar^VA 

In addition, we use OT and [a]T as abbreviations for the multisets 

{{ °Vi, »., DtPn }} and {{ [a]<pi,..., [a]ipn }} 

respectively. 

8 



Definition 4.1  The Gentzen-style sequent calculus for the logic S4F has the following ax- 
ioms and rules. 

1.  Classical propositional logic axioms and rules for {-L,—>}; 

(Axiom) :   ip =$• <p>      (± =>) : J_ =r> 

r!=»Ai,y> ^,r2=»A2 ^,r=»A,^ 

2. Structural rules: 

( Weaib =►) :     ^ AA (=► Weafc) :   J ^.A 
v y   v?,r=^A v y   r=^A,v? 

(Contr =►) :  ^^ (* G»*) :   ^V" v '    v?,r=^A v '    r=^>A,v? 

ri^Ax,y y,r,=»Aa 

3. S4 ru/es /or □ : 

□v?,r=>A      v     y   Dr=^ü9? 

^. KF rule for [a]: 
ix i      r i\ r=^ A ([a] =» [a]) : 

[a]r =» [a] A 

We wnie 
S4F VG r =► A 

i/ £fee sequent T =$> A m #ie language Caa has a S4F sequent calculus derivation, and we 
write 

S4F H5 T =» A 

if f^e sequent T =r> A m #ie language Caa has a cut-free S4F sequent calculus derivation. 

Note that 1., 2., 3. constitute a Gentzen-style proof system for S4 (cf. [TS96]). 

Proposition 4.2 Equivalence of Sequent Calculus and Hilbert-style proof system for S4F 
Let T and A be multisets of formulas of Caa, and let tp be any formula of Caa- 

9 



(i) 7/S4F hG r =4> A then S4F \-H A r "+ V A- 

(ii) 7/S4F h# 9? tf*en S4F hG =► y>. 

Proof, (i) Proceed by induction on the complexity of the S4FG sequent calculus derivation 
of T => A. Since 1., 2., 3. axiomatize a sequent variant of S4 it suffices to verify the rule 
concerning the modality [a]. 

So assume the last rule applied in the derivation of T =£> A is ([a] =>■ [a]), and the 
result holds for the upper sequent of the rule: T is [a]T' and A is [a] A', and the sequent 
T =^ A is derived from T' =» A' by the ([a] =>■ [a]) rule. By the induction hypothesis, 

S4Fhtf Ar^ VA- Then 

1. AT-^VA' induction hypothesis 
2. [a](Ar->VA0 from 1.  by [a]—necessitation 
3. WAr'-^WVA' from 2.  by [a]K 
4. HAr'^AWr' theorem of S4F# 
5. [a]VA'«H-VWA' theorem of S4F# 
6. AMI* -+ VHA' from 3.,4.   and 5.   by propositional logic 

(ii) We show that each of the axioms of S4F# are derivable in S4FG, and that each of 
the inference rules of S4F# are preserved in S4FG- For the axioms and rules of S4 this is 
known ([TS96]). 

Consider [a]-necessitation. Assume S4F \-Q =r> <-p. Then applying ([a] =$> [a]) (with empty 
antecedent) we obtain S4F \~G =£• [a]1?- 

Axiom [a]K: 
<p =$■ cp        iß  =$■  xj> (Axioms) 

ip,(p-tif>  =»  if)      (—>-=») 
[a]y,[a](y?->-V>)   =»•   [a]if)    ([a] => [a]) 

[a](<p -» if)) =► [a]ip -> [a]if)    (=►->) 

=* [a](<p -»• if)) -»• ([a]y> -»• [<#)   (=»-*) 

Axiom [a]->, the -> direction (no£ an Intuitionistic derivation) 

ip =$~ tp   (Axiom) 
<p> =j> <p, _l_   (=> Weak) 

=»■ J_ =*► 

[a]p -► -L =» [a](p -*• -L) (" 
(Mv> -+ -L) "> M(V -»" -L)   (=►-»") 

10 



Axiom [a]->, the <— direction: 

(p =>• if (Axiom)        _L =»   (i. =£>) 
(y-H), ¥>=►      (->=») 

[g](y->J.), [q]y>=»>       ([a] =» [a]) 
[a](y> -» 1), [o]y> =» J-     (=> Weafc) 

[a](y> -)> 1) =» [o]y> -+ -L    (=»->•) 
=» [a](v> -► ±) -+ ([% -+ J-)   (=M 

We conclude this section with some rules admissible in the cut-free sequent calculus 
S4FG-, which are used in the proof of completeness in Section 6. 

Proposition 4.3 Let V and A be multisets of formulas of Caa, let ip,ifi be formulas of Caa, 
and let k € N.  The following rules are admissible in the cut-free sequent calculus S4F<3-. 

_ N      r =► [a] V   [o] V - A 

W -►=►) = [a]^-^0),r=^A 

(=► [a]* ->) : fc    iN>      [a]V,r=^A,[a]V 
T =J> A, [a]*(p ->• ip) 

Proof. An argument is a pretty standard one for cut-free derivations. A straightforward 
strategy in each case should be to first apply the appropriate connective/modality rule, 
(—>=£>), (=r~>•) and (□ =>•), respectively, then deal with the [a]* prefix. We leave this to a 
reader as a routine exercise. ■ 

5    Kripke Semantics 

Definition 5.1 A Kripke frame for Caa is a triple K = (W, R, F), where 

• W T^ 0 is a set of "worlds"; 

• R C W x W is a reflexive and transitive binary relation on W; and 

• F :W -±W is a total function on W. 

A Kripke frame K = (W, R, F) is called finite iff W is a finite set. 

11 



By standard arguments, reflexive and transitive binary relations capture precisely the 
S4 O modality. As in [Lem77], §4, pp. 60-61, a total function F : W —y W is used to 
interpret the [a] modality. If one prefers to interpret modalities with a binary relation on 
W, take Q = graph(F). Then as a binary relation, Q is both "total" and "functional", i.e. 
for all w G W, there exists a unique v G W such that (w, v) G Q. The "totality" or "serial" 
condition: every w € W has at least one Q-successor, is characteristic for the deontic scheme: 

[a]D :     [a]cp —t (a)(p 

The converse scheme: 
[o]Dc :     {a)(p -> [a]<p 

is characterized by the "functionality" or "determinism" condition: every w € W has at 
most one Q-successor. 

Definition 5.2 A valuation for a Kripke frame K = (W, R, F) is a map r] : W —> V(AP) 
assigning a set of atomic propositions n(w) C AP to each world w G W. Each such valuation 
for K, determines a forcing relation lh^=lh^C W x AP defined by 

w IK, p    iff  p G f]{w) 

which uniquely extends a forcing relation IH^C WxCaa (with the same name) on all formulas 
of Cna, by the following clauses: 

(i) w \\-v -up  iff   w ¥n <p; 

(ii) w \\-v (p —>• iß    iff   w¥v ip   or w \\-n iß; 

(iii) w IK, Dip    iff   for all v G W, if (to, v) G R then v IK, ip; 

(iv) w \\-n [a](p    iff   F(w) lh„ (p. 

for all w G W, and all (p,xp G £aa • 

If Q = graph(F), then by the total functionality of Q, this last clause is equivalent to 

w \\-v [a](p   iff   for all v G W, if (w, v) G Q  then v IH,, (p. 

Definition 5.3 A Kripke model for Caa is a pair (/C, n), where JC — (W, R, F) is a frame 
for Caa and n : W —)■ V{AP) is a valuation for K. 

Definition 5.4 Let tp be a propositional formula of Caa- 

• <p is satisfied (or forced,) at a world w G W in a Kripke model (fC, n) iff w IH^ ip; 
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• ip is true in a Kripke model (JC,r)), written (/C, 77) lh <p, iff for all worlds w € W, we 
have w lh^ <p; 

• ip is valid in a frame K, written K lh <p, iff for all valuations n :W —>■ V(AP) for K, 
we have (JC, n) lh (p; 

• ip is Kripke valid iff for all frames K for Caa>   fC lh <p. 

Proposition 5.5 Kripke Soundness of S4F Hilbert-style proof system 
For all formulas <p of Caa,   if S4F h# (p   then <p is Kripke valid. 

Proof. The required verification is that each of the axioms of S4F# are Kripke valid, and 
that the inference rules of S4F# preserve Kripke validity. For the axioms CP of classical 
propositional logic and for modus ponens, this is trivial. The verification for the S4 axioms 
K, T and 4, and the D-necessitation rule follow the standard proof of soundness of the 
class of transitive and reflexive frames for S4; see, for example, [HC96], pp.56-57. For the 
[a]-necessitation rule, suppose <p is Kripke valid, let K, = (W, R, F) be a frame for £aa, and 
let 7/ be a valuation for tC. Since <p is Kripke valid and F(w) € W since F is total, we have 
F(w) lbv (p. Hence w lh,, ip. Hence [a](p is also Kripke valid. The verification of the validity 
of the [a]K and [a]F axioms is also straightforward, taking as a starting point the fact that 
for any formula ip and any w G W, either F(w) lh,, <p or F(w) ))fn (p, and then crunching 
through the definitions of forcing for ->, —¥ and [a], ■ 

Proposition 5.6 For all formulas ip of £aa, 
if %\= <p  for all topological structures % for £aa, 
then K, lh <p> for all Kripke frames K for £aa- 

Proof. Given a Kripke frame K, = (W, R, F) be a for £aa, define TR to be the topology on 
W which has as a basis the collection of all sets 

Bw = {veW\(w,v)eR}3 

So Bw is the set of all .R-successors of w. Note that w € Bw (by the reflexivity of R) and 
v e Bw implies BV.C Bw (by the transitivity of R), so Bw = [Jv€B Bv. It is readily verified 
that for any set A C W, we haVe: 

intTR{A)   =   {weW\BwCA} 
=   {w e W j for all v € W, if (to, v) G R then v € A} 

3The topology TR is variously known as the "cone topology" (generated from ß-cones Bw) and the 
"Alexandroff topology" (from [Ale56], where R is a partial order). Grzegorczyk uses an equivalent topology 
in [Grz67]. 
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In particular, an open set U G 7R is a neighborhood of w iff Bw C U. 
Since F : W —¥ W is a total function, the induced structure X/c = (VT,7R, F) is a 

topological structure for Caa- Given a valuation n : W —V V(AP) for fC, define its dual 
valuation £„ : AP ->• P(W) for XK by: 

«; € £„(p)   iff   p G »7(u>) 

for all p G AP and w G W. A simple induction on formulas establishes that for all ip G Caa 

and all w G W, 
w G llvll^    iff   "> !K? V 

Hence 

and the result follows. ■ 

6    Kripke Completeness for S4F 

Our task in this section is Kripke completeness for S4F, together with the finite model 
property, and a semantic proof of cut-elimination. We prove that for all sequents To =r- Ao 
in the language Caa, if To =>■ Ao does not have a cut-free proof in S4F(y_, then there is a finite 
Kripke model (/C, 77) for Caa such that at a world w0 of JC, we have w0 iff" /\ T0 —>■ V A0, i.e. 
w0 lh^ (p for each formula ip occurring in the antecedent To, and WQ IK^ ip for each formula 
V» occurring in the succedent Ao. 

The fundamental notion is that of a saturated sequent. A sequent r =$> A in the language 
Caa (in fact, in the language Co) is called S4 saturated iff each the following conditions hold: 

(1.) if ip —y ip G T then either xp G T or ip G A; 

(2.) if (p ->■ xp G A then both <p G T and V> G A; 

(3.) if Ocp G r then v? G T, 

for all ip,ip G £aa(>CD). Trivially, the empty sequent, 0 =£> 0, is S4 saturated. 
. Variants of the notion of saturation for sequents are found throughout the modal and 

non-classical logic literature; see, for example, [AS93], [Av84]. This notion is intimately 
related with the notion of a set of signed formulas as a consistency property in [Fi83]. The 
saturation algorithm below is modelled on that of [AS93]. Here, we strengthen the notion of 
saturation to deal with the [a] operator. 

Definition 6.1 

A sequent T =£• A of Caa is called S4F saturated iff each the following conditions hold: 
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(1.) if[a]k((p -+ il>) € r then either [a]fct/> e T or [a]k<p € A; 

(2.) if[a]k(tp -»• V>) € A tfien 60/Ä [a]V € T and [a]V € A; 

(3.) *y[a]*Dy> € r then  [a]ktp € T; 

/or a// <£>, ^ € £Q0 and fcfN. 

It is immediate that if T =>■ A is S4F saturated, then r =>■ A is S4 saturated, since S4 
saturation is just the case of k = 0 in each of conditions (1.), (2.) and (3.). In the stronger 
notion of S4F saturation, we require that subformulas behave "appropriately" with respect 
to iterated [a]fc's. Note that each of the conditions is reflected in an admissible rule for 
S4F<3-, as given in Proposition 4.3. 

As a technical point, SubForm(ToU AQ) should be treated as a multiset: for each formula 
ip occurring in the multiset To U Ao, the multiset of all subformulas of cp is contained in 
SubForm(To U Ao). In particular, expressions of the form 

r U A C SubForm(T0 U A0) (1) 

are to be read as multiset inclusion. Given a sequent To =r> Ao, there are only finitely many 
sequents (r =r> A) of Caa such that the equation above is satisfied. 

Lemma 6.2 S4F Saturation 
For each sequent YQ =r- Ao of £aa, 
if S4F y-Q- To =£• Ao, then there is an S4F saturated sequent T =4> A such that 

(a) r0crc SubForm{T0 U A0); 

(b) Ao C A C SubForm(T0 U A0); 

(c) S4FHö_r=*-A. 

Moreover, by determinizing the algorithm which produces such a saturated sequent from 
input To =>• Ao, we may take the output T =>■ A to be unique, and denote it Sat(To =r> Ao), 
the S4F saturation of To =£• Ao. 

Proof. We expand on the saturation algorithm of [AS93], taking care to eliminate any non- 
determinism. Given as input a sequent To =r> Ao in the language Caa such that S4F ¥Q- 

T0 =£■ A0, we construct a finite tree T(r0 =£• Ao) labelled with sequents of Coa such that: 

(i) the root node of T(r0 => A0) is labelled by T0 =*> A0; 

(ii) all sequents T => A labelling nodes in T(r0 => A0) satisfy: 
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(a) r0 C r C SubForm(T0 U A0); 

(b) A0 C A C SubForm(rQ U A0). 

The algorithm requires a sub-routine Marking, which is a book-keeping device for keep- 
ing track of which formulas have been dealt with or are yet to be dealt with. 
Marking(r =$■ A): Mark each occurrence of a formula in T U A with either a "0" (yet to 
be dealt with) or a "1" (dealt with) as follows: 

• Each occurrence of a propositional variable or JL in T U A is marked "1". 

• For each occurrence of a formula [a]k(ip —> ip) in T, if there is no occurrence of [a]kxß in 
r and there is also no occurrence of [a]k(p in A, then mark the [a]k(ip -> ip) with "0"; 
otherwise, mark it with "1". 

• For each occurrence of a formula [a]k((p -> ip) in A, if there is an occurrence of [a]k(p 
in T and there is also an occurrence of [a]kij) in A, then mark the [a]k((p —> iß) with 
"1"; otherwise, mark it with "0". 

• For each occurrence of a formula [a]fcüt^ in T, if there is no occurrence of [a]k<p in T 
then mark the [a]fcDc^ with "0"; otherwise, mark it with "1". 

• All remaining occurrences of formulas in T U A are marked "1". 

Initialize:   The current node is the root node labelled T0 => Ao-   Run the sub-routine 
Marking(r0 =► A0). 
Repeat with each current node, labelled T => A: 

0. Axiom Test: Check if T n A ^ 0, or if _L e I\ 

If either of these tests are satisfied, put a check mark "/" next to the current node 
then backtrack up the tree to the first ancestor of the current node that is a branching 
node and has a child node without a check mark, then select the check-less (always the 
right) child as the new current node. [If all children of all branching ancestors of the 
current node are checked, then the tree T(Fo =$■ Ao) can be easily transformed into a 
cut-free proof in S4FQ of To => Ao (using only (Axiom), (JL =r»), the admissible rules 
([a]k —>=>), (=r- [a]k —>•) and ([a]*n =r-), plus the weakening and contraction rules), 
which contradicts the assumption that S4F Y-Q- TO =$■ Ao.] 

If T n A = 0 and J_ ^ T, proceed to 1. working with the current node. 

1. Antecedent [a]k —>•:   If T contains an occurrence of a formula [a]fc(</? —y xß) marked 
"0", put a check mark "/" next to the current node, then create two child nodes: 

r => A, [a] V T, [a]krl> =*> A 

\ / 
r=^ A / 
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labelled r =>• A, [a] V and T, [a]kif> =*■ A, respectively. Run the marking sub-routine 
on both child nodes: Marking(r =4> A,[o]V). and Marking(r, [a]kxß =► A). Then 
select the left child node, labelled T ^ A, [a]ktp, as the new current node. 

If T contains no occurrences of any formula [a]k(<p -¥ x/>) marked "0", proceed to 2. 
working with the current node. 

2. Succedent [a]k ->:    If A contains an occurrence of a formula [a]k(tp ->• VO marked 
"0", put a check mark "/" next to the current node, then create one child node: 

r,[a]V=*A,[a]fy 
I 

r=^A / 

labelled I\ [a] V => A,[a]V- Run the sub-routine Marking(I\ [a]\? =► A,[a]fcV>)- 
Select the child node labelled T, [a] V =$■ A, [a]kxp as the new current node. 

If A contains no occurrences of any formula [a\k(ip -» tß) marked "0", proceed to 3. 
working with the current node. 

3. Antecedent [a]fcü:   If T contains an occurrence of a formula [a]fcü(,i? marked "0", put 
a check mark "/" next to the current node, then create one child node: 

r,[a]V^A 
I 

r=^A / 

labelled T, [a]kip => A. Run the sub-routine Marking(r, [a]V =► A). Select the child 
node labelled T, [a]kip => A as the new current node. 

If T contains no occurrences of any formula [a]fcüv? marked "0", then proceed to 4. 

4. Terminate and return the label of the current node, T =^ A (which does NOT have 
a check mark "/") as the saturation of T0 =>■ A0, i.e. Sat(T0 =£> A0) = T =>■ A 

The saturation algorithm must terminate because SubForm(r0 U A0) is finite and there 
is at most two branches at each step. 

It is immediate from the construction that if T =$■ A = Sat(T0 =£• A0) then 

(a) r0crc SubForm(T0 U A0) and 

(b) A0 C A C SubForm{T0 U A0) 

hold. To see that 

(c) S4F FG_ T =* A 
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also holds, observe that if T =>• A had a cut-free proof in S4FG-, then by saturation, we 
would have T D A ^ 0 or J_ € T; from such axiom sequents, we could reverse the steps in the 
saturation process to construct a cut-free proof of To =>• Ao, contradicting the assumption 
that S4F FG_ r0 => A0. ■ 

As a corollary of the proof (the Marking sub-routine), we have that for sequents T =^ A 
of Caa with S4F Y-G- r =► A, 

r =» A is saturated  iff  Sat(T =*• A) = T =» A 

To deal with formulas having [a] as the main operator/connective, we define an operation 
on sequents called "Strip". 

Definition 6.3 For any sequent T =£■ A of Caa, define 

Strip(T =► A)  === {{^ | [% € T}} => {{V> | [<# € A}} 

where the double braces {{...}} denote multi-set formation. 

So if Strip(T =£• A) = (r' =» A'), then for each occurrence of a formula [a]cp in T, there is 
a corresponding occurrence of 9? in V, and likewise, for each occurrence of a formula [a]ij> in 
A, there is a corresponding occurrence of xj> in A', and these are the only formulas occurring 
in P and A' respectively. In particular, all formulas in T U A that do not have [a] as the 
main operator/connective are erased completely by the Strip operator. Thus if there are no 
occurrences of formulas of the form [a](p in T U A, then Strip(T =>■ A) = (0 =» 0), the empty 
sequent. 

Lemma 6.4 For all sequents T =>• A of Caa, if Strip(T =$■ A) = V => A', then for all 
<p. € Caa, 

(i) V C SubForm{T) and A' C SubForm(A); 

(ii) [a]ver iff cpe r'; 

(iii) [a]<p € A   iff y> € A'; 

(iv) i/ S4F FG_ r =* A,   tfien  S4F FG- V =4> A'; 

(v) i/" T =^ A is S4F saturated, then T' =>• A' is a/so S4F saturated. 

18 



Proof. Properties (i), (ii) and (iii) are immediate from the definition of Strip. For (iv), 
suppose S4F FG_ r =^ A, but S4F hG_ P =4> A'. Then from a cut-free proof of P =4> A', 
one can construct a cut-free proof of T =$> A using the ([a] =>■ [a]) rule followed by left 
(respectively, right) weakening of all the formulas in T (respectively, A) that do not have [a] 
as the main operator/connective. For (v), suppose T =^ A is S4F saturated, and consider 
P =» A'. Then for clause (1.) of S4F saturation, 

[a]k(<p -+ 0) € P 
<S>   [a]l+1(^^)er by(ii) 
=^   [a]k+1ip G T  or [a]fc+V € A by S4F   saturation of T => A 
^   [a]fcV e r'  or [a]V € A' by (ii)  and (iii) 

The verification for clauses (2.) and (3.) proceeds similarly. ■ 

As is suggested by the name, the Strip function "strips off" outermost [a]'s, thus reducing 
the complexity of the sequent with respect to the nesting of [a]'s. The following definition 
makes this more precise. 

Definition 6.5 For formulas cp of Caa, define [a]rank(<£>) in the obvious way: 

[a]rank(?) =0 for q G AP U {J.} 
[a]rank(</? —> tß) = max{[a]rank(9?), [ajrank(V')} 

[a]rank(Dyj) = [a]rank(y>) 
[a]rank([a]y>) = [a]rank(9?) + 1 

And for a sequent T =$■ A of Coa, define 

[a]rank(r =£■ A) = max{[a]rank(<£>) | ip in T U A} 

Lemma 6.6 For any sequent T =£> A of Caa> 

(a) ifT U A contains at least one formula of the form [a](p, then 

[o]rank(5'*rip(r =>■ A)) < [a]rank(r =► A) - 1 

and otherwise 
[a]Txak(Strip(T =» A)) = 0 

(b) z/[a]rank(r =► A) = m   then Stripm+1(T =4> A) = (0 =► 0). 

Proof. Immediate from Definition 6.5. ■ 
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Definition 6.7 For each sequent T0 =£> Ao in the language £na> define S'u6-S4F(r'o =r> Ao) 
to be the set of all sequents T =£• A in Caa satisfying the three properties: 

• r =£■ A is S4F saturated; 

• r U A C SubForm(T0 U A0); 

• S4F Y-G_ r =► A. 

It is immediate from the second property that Sub-S4F(To =r- Ao) is finite; it is also non- 
empty since it always contains the empty sequent, (0 =£> 0). Note that if S4F Y-Q- TO =>• A0, 
then Sat(T0 =>- A0) = Ti =► Ai is in Sub-S4F(T0 => A0). 

Definition 6.8 For eacfe sequent To =3> Ao in £/ie language Coat we define a Kripke frame 
£(r0=}>Ao) = (W, R, F) for T0 =>• A0 as follows: 

• W = Sub-S4F(T0 =► Ao); 

• ((r =*• A), (r' =>■ A')) € R    iff for all ip inCaa, a¥ € T implies Dip e T' 

• F = Strip 

The Kripke frame /C(r0=j.A0) *s called the S4F saturation frame /or To =>• Ao. 
Define the canonical valuation n : W -± "P(PV) /or /C(r0=».Ao) ^2/ 

p € n(r =*> A) iff per 

It is readily verified that the S4F saturation frame /C(r0=$.A0) 
iS a Kripke frame for Caa. The 

reflexivity and transitivity of R follow from the corresponding properties of implication, and 
by Lemma 6.4, F - Strip : W -+ W is a total function on W = Sub-S4F(T0 => A0). 

Lemma 6.9 Main Semantic Lemma for S4F 
Let T0 =^ Ao be any sequent in £aa, let £ = £(r0=*-A0) &e the S4F saturation frame for 

To =r- Ao, and let n be the canonical valuation for K as in Definition 6.8. 
Then for all (T =$■ A) € W and for all formulas <p in Caa, we have: 

<p G T       implies    (r =>• A) lf-„ tp 
(p € A      implies    (r => A) ¥n ip 

20 



Proof. We proceed by induction on the complexity of formulas <p in Caa. 
Fix (r =$> A) G W = Sub-S4F(T0 =» A0). For prepositional variables p G PV, p G T 

implies (r =$• A) IK, p, directly from the definition of atomic forcing, and p £ A implies p ^ T 
since S4F Y-Q- T => A, hence (r =*> A) F,, p from the definition of atomic forcing. For the 
constant J_, the condition ± G T is impossible, since S4F YQ- r =$■ A, and (r =^ A) J^„ ± 
by the definition of Ih^for J_, hence the result holds for J_. 

For -», assume by induction that the result holds for ip and iß, for all sequents in W. Fix 
(r =» A) G W and suppose ip ->• ^ G T. Then by the S4F saturation of T => A (clause (1.), 
k = 0), we have either ^ £ T or ip G A. Hence by the induction hypothesis, (r =$■ A) IK, tp or 
(r => A) IP,, y>. Hence (r =>■ A) Ih^ ip -± ij>. For the succeedent, suppose <p —)• ^ G A. Then 
by the S4F saturation of T =^ A (clause (2.), k = 0), we have ip G T and ^ G A. Hence by 
the induction hypothesis, (r => A) IK, y? and (I"1 =^ A) F,, ip. Hence (r => A) ¥n ip -» V- 

For □ in the antecedent, assume by induction that the result holds for ip, for all sequents 
in W. Fix (r =£> A) G W and suppose Dip G I\ Now let (r' =^ A') € W be any sequent 
such that ((r => A), (r' => A')) G i?. Then Dip G T', by the definition of R, and then by 
the S4F saturation of T' =$■ A' (clause (3.), k — 0), we have ip G.T'. Hence by the induction 
hypothesis, (r' => A ) IK, ip. Thus by the definition of IK,for □, we have (r =r- A) IK, Dip. 

For □ in the succedent, assume by induction that the result holds for ip, for all sequents 
in W. Fix (r =£• A) G W and suppose Dip G A. Let O^i* —■> aV'n De a list of all occurrences 
of formulas in T which have □ as their main connective/operator. Let T =$■ A be the 
sequent □V'lj •••» '-'V'n =^ 'P- Then S4F FG- r =>■ A , for otherwise, from a cut-free proof of 
r' =£> A', we could construct a cut-free proof of T =>■ A using the rule (=>• □) plus left and 

right weakening, thus contradicting S4F YG- T => A. Now let (r => A ) = Sat(T' =$> A'). 
Then from Lemma 6.2, 

• (r   =^ A ) is S4F saturated; 

• r" C SubForm(T') C SubForm(T0 U A0), and 

A" C SubForm(A') C SubForm(T0 U A0); and 

• S4FKG_ r" =^ A". 

Hence (r" => A") eW = Sub-S4F(T0 => A0).   Moreover, ((T => A),(r" =» A")) G Ä, 

since d^,- G T implies ü^>,- G T . Now ip G A , hence by the induction hypothesis, (r   =£> 

A ) ¥n ip. Then by the definition of IK,for G, we have (r =*> A) ¥n Dip. 
Finally for [a], assume by induction that the result holds for </?, for all sequents in W. 

Fix (r => A) G W, and let r' =► A' = F(r =^ A) = Strip{T => A). Then [a]ip G T 
implies ip G T , by Lemma 6.4, hence by the induction hypothesis, (r => A) Ih,, (p. Then 
by the definition of Ih^for [a], we have (T =£■ A) IK, [a]<p. Symmetrically, for the succeedent, 
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[a](f e A implies y> G A', by Lemma 6.4, hence by the induction hypothesis, (I"' =$>■ A') \FV (p. 
Then by the definition of Ih^for [a], we have (r =>• A) ¥n [a]ip. ■ 

Theorem 6.10 Kripke completeness and finite model property for S4F 
Let To =r- Ao be any sequent in Caa ■ 
If S4F Y-G- To =>• Ao, then there is a finite Kripke frame K. and valuation n for K such 

that{K,,n)¥ /\T0^\/A0. 

Proof. Let K = /C(r0^A0) 
De the S4F saturation frame for T0 => A0, let n be the canonical 

valuation for £, as in Definition 6.8, and let (I^i =>• Ai) = Sat(T0 => A0). If S4F YQ- T0 =£• 
Ao then (ri => Ai) G W. Since T0 C Tr and A0 C Ai, we have by Lemma 6.9, 

(Ti =► Ai) ll-„ <p for all tp € T0 

and    (ri =► Ai) JH„ V> for all V> € A0 

hence 

(x:,7/)F/\ro^VAo 

7    Consolidation Theorems for S4F 

We consolidate the major results of previous sections. 

Theorem 7.1 For all multisets T, A of formulas of Caa, the following are equivalent: 

(1.) S4F hG_ T =J> A 

(2.) S4F hcr=^A 

(3.) S4FhtfAr-»VA 

(4.) % \= /\ T —y V A /or a// topological structures X /or £aa, 

(5.) K. Ih /\ T —y V A  /or a// Kripke frames K. for Caa, 

(6.) £ lh /\ T —y V A  /or all finite Kripke frames K for Caa- 

Proof. (1.) =^ (2.) is trivial. (2.) <& (3.) is Proposition 4.2. (3.) => (4.) is Proposition 3.2. 
(4.) =* (5.) is Proposition 5.6. (5.) =► (6.) is trivial. (6.) =>■ (1.) is Theorem 6.10. ■ 

Corollary 7.2  The sequent calculus S4FG admits cut-elimination. 

Corollary 7.3  The logic S4F is decidable. 
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8    Adding Continuity: S4C 

In our definition of a topological structure T = (X,T,f) for the language CDa, we place 
no restrictions on the function f \ X -¥ X, other than totality. The language itself is rich 
enough to express various properties of /, notably the continuity of / with respect to the 
topology T. We call the scheme 

Cont :    [a]Ü</?->■ 0[a]tp 

the continuity axiom, in virtue of the following proposition. 

Proposition 8.1 [Kur66] I,§13; [RS63] III,§3. 
Let % = (X, T, /) be a topological structure for Caa ■ Then the following are equivalent: 

(a) for each tp G Caa,  X (= [a]Otp -> 0[a]tp ; 

(b) for each tp G £Qa,  X (= [aptp <-► D[ap(p ; 

(c) the function f' : X -» X is continuous with respect to the topology T. 

Proof. Let tp be any formula of £aa, let £ be any valuation for X, and let A = \\tp\\^ C X. 
Then 

\\[a]ntp^a[a]tp\\^=X  iff  /^(mM^jCmM/"^)) 

and 
||[o]D^^D[o]D^=X  iff  f-1(intT(A)) = intr(f-1{intT(A))) 

Now the following equivalence is immediate: 

(b) :      f-l{intT{A)) = intr{f-\intT{A)))  for all A C X 
iff    (c):     f-1{U) = intT(f-1(U))  for all (7 GT 

i.e. / is continuous w.r.t. the topology T 

since £/ G T iff U = intr{U), and for any A C X, we have mirC^) = ^ for some U e T. 
So rewriting 

(a) :    /^(m^A)) C intT(f-l{A))  for all A C X 

it suffices to show that (a) =^ (c) and (b) =>■ (a). 
Assume (a) holds. Then for any U G T, we have £/ = intr(U), hence 

intrirHU)) C rX(^) = r^ntriU)) Q intT(r
l(U)) 

and thus 
r1(t/) = mtT(/-1(t/)) 
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so (a) =$■ (c). 
Now, for any AC X,  we have intq-{A) C A, hence applying int-y o /_1, we have 

intT{r\intT{A))) C m^y-^A)) 

Thus if (b) holds, we have 

r\intT{A)) = intT(f-l(intT(A))) C int-jif^A)) 

hence (b) =>■ (a), as required. ■ 
The preceding proposition gives us an alternative, equivalent version of the continuity 

axiom, namely: 
Cont* :   [apip -»■ Dfapv? 

It is also readily established that over the Hubert system S4F^, the schemes Cont and 
Cont* are provably equivalent. The Cont* scheme will be appealed to in devising a sequent 
calculus rule capturing continuity. 

From [RS63] and [Kur66], the converse of the Cont scheme, 

Open :   ü[a]v? -¥ [a]Oip 

characterizes the open mapping property. All instances of the Open scheme are true in a 
topological structure X = (X,T, /), exactly when the function / : X —>■ X is such that for 
all U € T, the image f(U) € T, since the latter condition holds exactly when 

intT(f-\A)) C f-x{intT{A)) for all A C X; 

see [RS63], III,§3, p. 99, and [Kur66], I,§13,XIV. Thus the conjunction of the schemes Cont 
and Open, namely: 

0[a]ip f-» [a]n<p 

characterizes continuous and open maps / : X —>■ X; equivalently, the set map /-1 : 
V(X) —y V(X) is a (topological) homomorphism of the topological Boolean algebra *Bf(X) = 
(V(X), U, n, -, X, 0, intT) into itself ([RS63], III,§3). 

In this study, our chief interest is in continuity. Next, we characterize the Kripke models 
which satisfy the continuity axiom. 

Proposition 8.2 Let K. = (W,R, F) be a Kripke frame for Caa. Then the following are 
equivalent: 

(a) for each (p G Caa, £ IH [a]a<P —> a[o]f ', 
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(b) the function F : W —>■ W satisfies the condition: 

(w,v)eR implies (F(w),F(v)) G R 

for all w, v G W. 

Proof. For (b) =» (a), fix ip G Caa, w eW and a valuation 77 for /C. Then 

w IFr, [a]n<p->■ D[a\(p 
■&■    w IK [a]n<p and w IPV R[a](p 
&    for all x e W, if (F(tu), x) e R then x IK, <£>, 

and for some v eW, (w, v) G i? and F(v) F,, <£> 
=>■    for some v G W, (to, u) € i£, 

but for all xeW.it {F(w), x) G R then x 7^ F(v) 
•&    for some »elf, (w, v) e R but (F(Iü), F(u)) £ i? 

For (a) =^ (b), suppose (b) is false, so there exists w,v,u,z G W such that (tw,u) € R, 
u = F(w), z = F(v) and (u,z) fi R. (By reflexivity, u ^ z, so W must have at least 2 
elements, and so be non-degenerate.) Choose any p e AP and define n : W —>■ V(AP) by 

„(x)= J W   if(«,*)€Ä 
/v  '      ^ 0       otherwise 

By construction of 77, (u,z) £ R implies z \FV p, hence F(v) ¥n p. since z = F(v), and so 
DF, [a]p. Since (to, u) G i?, this means to ¥n Q[a]p. 
Our chosen valuation 77 also gives us x IK, p for all x G W such that (u,x) e R, hence 
u Ihj, Dp; since u = F(w), we have tu IK [a]ap. 
Hence w ¥n [a] dp ->• d[a]p. ■ 

For comparative purposes, note that a Kripke frame JC = (W, R, F) forces all instances 
of the Open scheme exactly when the condition: 

(F(w),u)eR  =$■   (3v eW)[F(v) = u and (w, v) e R]   (F-open) 

holds for all w, u  G   W.    This condition is properly stronger than the converse of R- 
monotonicity: 

(F(w),F(v))eR  =>   {w,v)eR 

since the (F—open) condition can fail when F is not surjective; i.e. there is a u G W such 
that u ^ F(v) for all v G W. 

Definition 8.3 A topological structure % = (X,T,f) for £aa is called continuous iff f is 
continuous with respect to T. 

A Kripke frame K. = (W, R, F) for Caa is called continuous iff F satisfies the condition: 

(w,v)eR implies (F(w),F(v)) G R 

for all w,v G W; i.e. F is R-monotone. 
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Proposition 8.4 For all formulas ip of Caa, 
if % \= ip for all continuous topological structures % for Caa, 
then K\\- <p> for all continuous Kripke frames JC for Caa ■ 

Proof. From. Proposition 5.6, it suffices to show that for each continuous Kripke frame 
JC = (W, R, F) for Caa, the induced topological structure %/c = (W,TR, F) is such that F is 
continuous w.r.t. the topology 7R. NOW for arbitrary A C W and w € W, we have: 

w 6 F-l{intTR{A)) 
&   F(w) e intTR(A) 
<*   (VzeW)[(F(w),z)eR=>z6 A] 
=$>  (VveW)[(w,v)eR=>F(v)eA]     (*) 
<3>   (Vt> € W){ (w,v)eR^v& F-^A)} 
&   weintr^F-^A)) 

with the implication (*) a consequence of: (w,v) G R =£■ (F(w),F(v)) € R- (It is also 
readily verified that the converse also holds: F is continuous with respect to 7R implies F is 
Ä-monotone.) ■ 

Definition 8.5 The Hilbert-style proof system for the logic S4C has as its axiom schemes 
those of S4F (Definition 3.1) together with all instances of the scheme 

Cont :    [a]D(p ->• n[a]<p 

in the language Caa; the inference rules are the same as those o/S4F. 
We write 

S4C \-H cp 

or say <p is S4C# provable, if the formula <p € Caa has an S4C Hilbert-style derivation. 

The following are derivable in S4C#, for any formula (p £ Caa and k G N. 

[a]feCont :        [a]kD<p ->• D[a]kip 
[a]feOCont :    0[a}kip -4 [a]kOip 

The following is an admissible inference rule in S4C#, for any formulas <p,xj>,x € Caa 

and fc, I e N: 
Continuous 
Hoare composition:       <p —> [a]kOx, x "~* [o]'n^ 

<p ->• [a]fc+'D^ 
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Proposition 8.6 Soundness of S4C Hilbert-style proof system 

For all formulas ip of Caa, if S4C \~jj ¥>; 
then %\= <p> for all continuous topological structures % for Caa 

and JC \\- (f  for all continuous Kripke frames K, for Caa. 

Proof. Immediate from Propositions 3.2, 8.1 and 8.2. ■ 

Definition 8.7  The Gentzen-style sequent calculus for the logic S4C has the same axioms 
and rules as those for S4F (Definition ^.1), and in addition, the rule: 

(C„„tG):     W^ 

The first point of note is that this new rule violates the sub-formula property, but it does 
so in a manageable way. To compensate, we have to deal with a larger class of psuedo-sub- 
formulas of a sequent. 

Definition 8.8 For each sequent TQ => Ao of Coa, define 

D-SubForm(T0 U A0) 
=   SubForm(T0 U A0) U {{Ocp | y <E SubForm(T0 U A0)}} 

where SubForm(To U Ao) and O-SubForm(r0 U Ao) are multisets of formulas4. 

Proposition 8.9 Equivalence of Sequent Calculus and Hilbert-style proof system for S4C 
Let T and A be multisets of formulas of Caa, and let (p be any formula of Caa- 

(i) //S4C \-G r =» A then S4C \-H /\T -5- \/A. 

(ii) 7/S4C \-H ip then S4C hG => ip. 

Proof. For (i), beyond the proof of part (i) of Proposition 4.2, we need only consider the 
case where the last rule applied in the S4CG derivation of T => A is the new (Conto) rule. 
So assume T is [a]Q</?, T' and the sequent T =^ A is derived from D[a]dc£>, V =$>■ A by the 
(ContG) rule. By the induction hypothesis, S4C \-H D[o]Py» A (f\T') -4\/A. Then 

4As in the discussion following Definition 6.1 
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1. D[a]DVA(Ar)-+ VA induction hypothesis 
2. Dyi —>• DDt/? axiom a 4 
3. [a](cV -»- aa^) from 2. by [a]—necessitation 
4. [a]D(p -> [ajODc^ from 3. by [a]K 
5. [ajüGyj -^ D[a]üy) axiom Cont 
6. [a]Dip -» D[a]üy> from 4. and 5. 
7.. [apv»A(Ar)-+V A from 1. and 6. by propositional logic 

For (ii), beyond the proof of part (ii) of Proposition 4.2, we only need show that the 
Cont axiom [a]Ocp -* 0[a]y is derivable in S4C(j. 

(p =r» ip      (Axiom) 
D(p=>(p     (a =») 

[c]<p    ([a] =* [a]) Dip 

n[c]a(p=> [c](p    (a =>) 
a[c]Dy =>• D[c]y   (=» a) 
[c]Dy =» Q[c]tp    (ContG) 

=> [ap<p ^ n[a]<p   (=►-») 

Observe that the scheme 

[a]*Cont* :     [a]fc[a]Oy -» [a]*D[a]D^ 

is derivable in S4C#: the derivation can be extracted from the proof of part (i) of the previous 
proposition, together with k applications of [a]-necessitation and an appeal to [a]kK. ++. 

Proposition 8.10 Let T and A be multisets of formulas of £aa, let <p be a formula ofCaa, 
and let k € N. The following rule is admissible in the (cut-free) sequent calculus S4C<3-. 

([a]*ContG) : 
[a]fcD[a]Dy,r=» A 
[a]fc[a]ay,r=4> A 

Proof. Again, as in 4.3, a straightforward strategy should be to first apply the rule Cont^ 
and then deal with the [a]k prefix. Without any loss of generality we may consider the case 
k = 1. Let [a]a[a]ay>, r =$■ A be derived in S4CGT- and let V be a corresponding derivation. 
Consider a node in V where the formula [a]a[a]Oy> was introduced first. There are three 
possibilities for a sequent assigned to this node: it is an axiom, an instant of the weakening 
or the [a] =>■ [a] rule. Let us treat the latter. The node under consideration is 

afap^r'^ A' 
[a]a[a]ay>,[a]r'^> [a]A' 
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We replace this node by a pair of nodes 

D[ap(p,T' ^ A' 
[a]ay,r =» A' (ContG) 

[a][a]D^,[a]r'^[a]A'       ([a] =► [a]) 

Now replace everywhere in the path from this node to the root sequent all corresponding 
occurrences of [a]ö[a]üy? by [a][a]üy>. Perform this operation with all the nodes where 
[a]ü[a]üy> was introduced, adjust some weakenings and get an S4CG- derivation of the 
desired sequent [a][a]ü<£>, r =$■ A. 

We leave the remaining cases to a reader as routine exercises. ■ 

9    Kripke Completeness for S4C 

To prove completeness for S4C, we modify the proof of Kripke completeness (and the finite 
model property) for S4F by further strengthening the notion of saturation to behave well 
with new Conto rule, and force the "[a]-stripping" Strip function to be monotone with 
respect to the accessibility relation: 

((r =*• A), (r' =» A')) ER   iff   [DveT  implies DtpeT'] 

Let's start with a stronger notion of saturation. 

Definition 9.1 A sequent F =$■ A in the language Caa is called S4C saturated iff each the 
following conditions hold: 

(1.)  if[a]k((p ->> V) 6 r then either [a]fy € T or [a]kcp e A; 

(2.)  if [a]k(ip -)■ 0) e A then both [a]kcp € T and [a]fy G A; 

(3.) if [a]kD(p e T then  [a]k<p e T; 

(4.) if [a]k[apcp € T then [a]kO[apip € I\ 

for all ip, ij> G Caa and k € N. 

Note that if T =$■ A is S4C saturated, then T =^ A is S4F saturated, since S4F saturation 
is just clauses (1.), (2.) and (3.) of S4C saturation. Clause (4.) of S4C saturation is reflected 
in the S4FG- admissible rule given in Proposition 8.10. 
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Lemma 9.2   S4C Saturation 
For each sequent TQ =>• Ao in the language Caa> 

if S4C YQ- To => A0, then there is an S4C saturated sequent T =>• A such that 

(a) r0crc O-SubForm{r0 U A0); 

(b) A0 C A C n-SubForm(T0 U A0); 

(c) S4C YG- r => A. 

Moreover, by determinizing the algorithm which produces such a saturated sequent from 
input T0 =£■ Ao, we may take the output T =$■ A to be unique, and denote it Sats4c(Fo => 
Ao),   the S4C saturation of To =>• Ao. 

Proof.    The saturation algorithm and its verification are analogous with those in the proof 
of Lemma 6.2. 

In the Marking(r =>• A) sub-routine, add an extra line: 

• For each occurrence of a formula [a]*[a]üy> in T, if there is no occurrence of [a]fcü[a]n</? 
in T then mark the [a]*[a]dip with "0"; otherwise, mark it with "1". 

In the main body of the algorithm, we add extra clauses: 

4. Antecedent [a]fc[a]d:   If T contains an occurrence of a formula [a]*[a]G<p marked "0", 
put a check mark "/" next to the current node, then create one child node: 

r,[a}kn[ap<p=> A 
I 

r=^A / 

labelled r,[o]*n[a]üy> => A.   Run the sub-routine Marking(r, [a]fcG[a]Gy> =► A). 
Select the child node labelled T, [a]*ü[a]üy> =>- A as the new current node. 

If T contains no occurrences of any formula [a]*[a]Ey marked "0", then proceed to 5. 

5. Terminate and return the label of the current node, T =^ A (which does NOT have 
a check mark "/") as the saturation of To =r> Ao, i.e. Sats4c(To =$■ Ao) = T =r> A 

As before, the saturation algorithm must terminate because OSubForm(To U A0) is 
finite and there is at most two branches at each step. 

It is immediate from the construction that if V =£• A = Sats4c(To =>• A0) then 

(a) r0 C T C D-SubForm(T0 U A0) and 
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(b) A0CAC n-SubForm(T0 U A0) 

hold, and 

(c) S4C YG- T =* A 

by the same argument as in Lemma 6.2. ■ 

Next, we summarize the relevant properties of the Strip function in this setting. 

Lemma 9.3 Let V =$■ A be a sequent of Caa, and let (Tf =£> A') = Strip(T =$• A). 
Then for all cp € Caa and k £ N, 

(i) r C SubForm(T) and A' C SubForm(A); 

(ii) [a]fc+V € r   iff   [a]V € V; 

(iii) [a]fc+V 6 A   iff  [a]V € A'/ 

(iv) if S4C FG_ r =* A,   then  S4C FG_ H => A'; 

(v) ifT=$>A is S4C saturated, then T' =$■ A' is also S4C saturated. 

Proof. Properties (i), (ii) and (iii) are as in Lemma 6.4, and the argument for (iv) is 
identical to that in the proof of that lemma. For (v), we only need check clause (4.) of S4C 
saturation. Suppose r =£> A is S4C saturated, and consider P =£• A'. Then 

[a]*[a]D<^ 6 V 
4»    [af+1[o]D^r by(ii) 
=►   [a]fc+1a[a]ü^ er by S4C saturation of T =► A 
«*•    [a]*D[a]Dv € T by (ii) 

Hence F =*• A' is S4C saturated. ■ 

Definition 9.4 For each sequent To =r- A0 in the language Caa, define Sub-S4C(To =>■ Ao) 
to be the set of all sequents T =>■ A in Caa satisfying the three properties: 

• r =£■ A is S4C saturated; 

• T U A C D-SubForm{r0 U A0); 

• S4C Y-G- r =► A. 

Definition 9.5 For each sequent To =4> Ao in the language Caa, we define a Kripke frame 
£(r0=$-Ao) = (W> R, F) for T0 =$■ A0 as follows: 
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• W = Sub-S4C(T0 =► Ao); 

• ((r=> A),(r' =>- A')) eR  ;#o^er implieso^er' 

• F = Strip 

The Kripke frame /C(r0=j.A0) *s called the S4C saturation frame /or To => Ao. 
Define the canonical valuation n: W —>■ "P(PV) /or /C(r0=-.A0) ^2/ 

p 6 rj(T => A)  iff p€T 

By Lemma 9.3, W = Sub-S4C(r0 =>• A0) is closed under F = Strip, and R is reflex- 
ive and transitive, hence /C(r0=>A0) is a Kripke frame for Caa. Our real interest is in the 
monotonicity of Strip with respect to R. 

Lemma 9.6 Let T0 =>• A0 be a sequent of Caa such that S4C Y-Q-  T0 =$■ A0, and let 
£(r0=*Ao) ^e ^e S4C saturation frame for To =>■ Ao, as in Definition 9.5. 

Then F — Strip is monotone with respect to the relation R, where 

((ri =>■ A2), (r2 =► A2)) eR   <&   a<p G r\ implies □</? e r2 

Hence /C(r0=^A0) 
iS a continuous Kripke frame. 

Proof.   Assume (I\ => Ai), (r2 =► A2) € Wgo=>>Ao), and ((rx => Ai), (r2 =4> A2)) € #• Let 
Strip(Ti =► A,-) = (rj =* AJ), for t = 1,2. Then fix 9? e Ca*. Then 

n^ G r; 
<$■ [a]G<p G T1 by (ii) of Lemma 9.3 
=$■ D[a]n(p G Ti by S4C saturation, clause (4.) with k = 0 
=>■ D[a]ü</> G T2 by definition of R 
=> [a]Oy> € T2 by S4C saturation, clause (3.) with k = 0 
^ Otp-e r2 by (ii) of Lemma 9.3 

Hence ((ri =$> A[), (F2 =*► A2)), as required. ■ 

Lemma 9.7 Main Semantic Lemma for S4C 
Let To =£■ Ao 6e ant/ sequent in Caa, let K = /C(r0=^A0) 

= (W> -^> -^O ^e *^e S4C saturation 
frame for T0 =£• A0, and let 77 6e f/ie canonical valuation for K as in Definition 9.5. 

Then for all (Y =>• A) G W and for all formulas <p in Caa, we have: 

ip G T       implies    (r => A) IK, tp 
(p G A      implies    (r =>■ A) JP,, (p 
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Proof.     Duplicate the proof of Lemma 6.9, replacing S4F with S4C and SubForm with 
O-SubForm in the analysis of □ in the succedent. ■ 

Theorem 9.8 Kripke completeness and finite model property for S4C 
Let To =>• Ao be any sequent in Caa ■ 
//S4CFG_IWAo, 
then there is a finite continuous Kripke frame JC and valuation r\ for K such that (JC, n) W- 

Ar0->VAo. 

Proof.    Same as the proof of Theorem 6.10. ■ 

10    Consolidation Theorems for S4C 

As for S4F, we consolidate the major results of previous sections. 

Theorem 10.1 For all multisets T,A of formulas of Caa, the following are equivalent: 

(1.)   S4C hG_ r =► A 

(2.)  S4C \-G r => A 

(3.)  S4Cr-H Ar-> VA 

(4.)   % \= f\T —)■ \/ A for all continuous topological structures % for Caa, 

(5.)   K, lh f\ T —> \J A  for all continuous Kripke frames JC for Caa, 

(6.)   K, lh f\ T —>• Y A  for all finite continuous Kripke frames K for Caa- 

Proof. (1.) => (2.) is trivial. (2.) <& (3.) is Proposition 8.9. (3.) => (4.) is Proposition 8.6. 
(4.) => (5.) is Proposition 8.4. (5.) =» (6.) is trivial. (6.) =► (1.) is Theorem 9.8. ■ 

Corollary 10.2  The sequent calculus S4CG admits cut-elimination. 

Corollary 10.3 The logic S4C is decidable. 
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